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Abstract: Finite element modelling of geoelectrical sections is carried out in two cases: (a) Ore bodies with a massive
texture and an electrical resistivity in contrast with the resistivity of the surrounding rocks, where 2.5D modelling is
applied; (b) Ore bodies with a disseminated texture having no contrast of resistivity with the surrounding rocks, where
3D models are under use. Two parameters characterize the constructed model - the apparent resisitivity and the induced
polarization. The effect of the relief as well as of the global geological structure is taken into account. Case studies
shown demonstrate different effects and usability of the modelling by finite elements.

 The results of such a modelling are presented according to a new method of "geoelectrical real section", proposed
by Perparim Alikaj, and developed recently in QUANTEQ IP Inc., Canada. They are a synthesis of many year's works of
the authors in collaboration with this company in a number of projects.
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INTRDUCTION

Resolving geophysical problems means a finite
iteration of the couple interpretation ↔ modelling.
Theoretical models exist for a number of ideal cases,
rarely found in nature. The problem becomes more
complicated when the depth of investigation increases,
together with an increase in the secondary effects
caused by the relief and the geological inhomogeneity
in depth. In this paper the problem of modelling
geoelectrical real sections is treated using finite
elements to solve elliptic equations in a heterogeneous
medium related to complex geological situations and
rugged relief. This procedure is used both for
resistivity and IP modelling.

PRINCIPLES OF APPLICATION OF FINITE
ELEMENTS IN MODELLING

GEOELECTRICAL SECTIONS

The key for modelling of geoelectrical sections is
the scattering of an electrical field in a heterogeneous
geological medium under a rugged relief. For this
purpose we have used (Frasheri et al., 1984; Frasheri
et al., 1990-94) the elliptic equation in its generalized

form, which is related to the following weak problem
(Zienkiewicz, 1977):

min ∫ [(∇ W)TD∇ U - WQ] dv =
V

= ∫ w [nTD∇ U - Un] ds
Sn

(1)

where U is the electrical field potential; W, w are
weight functions; D is the resistivity matrix; n is the
unitary normal vector to the boundary Sn; Un is the
Newman boundary condition value; Q is the
distributed electrical charge within the volume V.

We solved this problem by using parametric finite
elements with four nodes. Normally, the geoelectrical
section may be considered as a rectangle, the upper
part of which is deformed in correspondence with the
relief (Fig. 1).

The boundary conditions are of the Newman type,
which present power electrodes positioned in two
nodes of the upper edge of the rectangle. In the other
part of the boundary we normally use zero Newman
conditions.

The solution to the problem (1) gives the scattering
of the electrical potential in a discrete form. These
data need to be interpreted in the right way so as to
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give information compatible with that collected during
field surveys. We had considered two parameters, the
Apparent Resistivity (AR) and the Induced Pola-
rization (IP).

MODELLING OF APPARENT RESISTIVITY
ANOMALOUS EFFECTS

The meaning of "apparent resistivity" as a ratio
between two "resistivities" is related to the formula:

ρa = Ro.∆U/∆Uo (2)

where: ∆U is the difference between two adjacent
stations of the electrical potential of heterogeneous
geoelectrical section; ∆Uo is the corresponding
difference of electrical potential of the homogeneous
half-space, Ro is the resistivity in Ohm.m of the
homogeneous half-space.

During the field measurements Uo is evaluated by
the theoretical formula of an electrical dipole:

Uo = c (1/Ra - 1/Rb) (3)

where Uo is the electrical field potential in the case of
homogeneous half-space; Ra, Rb are distances from the
calculation point to the current electrodes A and B;
c = Ro.I/2π, where Ro is the resistivity and I is the
current intensity.

We used two solutions to carry out mathematical
modelling. First we solved the weak problem two
times, once for the heterogeneous case and the other
for the homogeneous half-space, thus having both
discrete approximations of U and Uo in formula (2).
The second solution was based on a special treatment
of the boundary conditions. The real geoelectrical
section has to be considered similar to the lower half
infinite space, but the ordinary finite element model
implies a finite domain as shown in Figure 1. As a
consequence the application of the theoretical solution
for Uo gives deformed results having a non-negligible
error. To avoid this error it is necessary to imply "the
infinite" on the finite boundary.
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FIG. 1. A finite element section of a geoelectrical section in a rugged relief, IP is given in percentage.

A "classical" solution of this problem is the use of
"infinite elements". A case of infinite elements used
for geoelectrical models is treated by Frasheri (1983).
Another solution, based on hybrid elements and
Fourier transform, is given by Tong and Rossettos
(1978). We used a simple solution for geosections
having no important heterogeneous horizontal layered
structure. In this case it is possible to evaluate
theoretically the normal gradient of the potential at the
boundary points using the formula:

Du/dn = c (Ra/Ra3 - Rb/Rb3).n (4)

where dU/dn is the normal to the boundary gradient of
electrical field potential; Ra, Rb are distance vectors of

the boundary point to the current electrodes A and B,
while Ra, Rb are the respective distances; n is the
normal unitary vector at the boundary points

In this case we can simply calculate the flux of
electricity on the boundary nodes and add respective
values in the right side of the simultaneous linear
equations resulting from the problem (1):

K.U = F (5)

where K is the master matrix of the system; U is the
vector of discrete values of the potential U in the
nodes; F is the vector of flux concentrated in the
boundary nodes.
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A comparison of apparent resistivity values over a
geosection with a vertical contact for the theoretical,
finite elements and "infinite" elements is given in
Figure2.

MODELLING OF INDUCED POLARIZATION
ANOMALOUS EFFECTS

We used the finite element modelling of IP in two
ways, related to the physical characteristics of the
geosections. The IP phenomenon is modeled mathema-
tically as the potential of a double layered surface,
which represents the boundary between the
mineralized homogeneous ore body and the
surrounding rocks. In reality mineralized ore bodies
have a certain texture, which is not actually
homogeneous. Bodies with a disseminated texture
have their IP scattered in the volume, and bodies with
a massive texture have the IP concentrated on their
boundary surface. The calculation of the IP effect is
based on the formula of Bleil (Bleil, 1953; Seigel,
1959), as well as on Komarov's evaluation (Komarov,
1972) assuming that C(Uo+Uip) ≈ CUo.

Taking into account the fact that in some cases the
heterogeneity of the medium may influence
considerably in the IP responses measured on the earth
surface, we used 2.5D finite element modelling of IP
for a heterogeneous medium (Fig. 1). After calculating
the potential U of the electrical field, we used the Bleil
formula for the calculation of the IP effect:

Uip= c ∫ ∇ U (1/R) dv
V

(6)

where Uip is the potential of the IP field; R is the
distance vector from the integration point to the
observation point; ∇ U is the potential gradient of the
primary electrical field, calculated by solving the finite
element model.

For 3D modelling of bodies with a massive texture
in homogeneous medium we used the Bleil formula
after its transformation using Green's formula:

Uip= c ∫ (1/R) (dU/dn) ds
S

(7)

where R is the distance vector from the integration
point to the observation point; dU/dn is the gradient of
the primary electrical potential on the boundary S of
the body, calculated as in formula (4).

The integral is numerically calculated by using the
concept of finite elements for the boundary of the
body, and by using standard numerical integration
methods for the finite elements, defining automatically
the number of integration points on the basis of the
relative size of elements (Fig. 3).

Being already a classical theory, finite elements
continue to give way to new aspects of development
and application of geophysics. Finite element
modelling of complicated geological situations is
necessary not only as a proof of the correctness of the
field data interpretation. It is also an important factor
for the development of a new concept and respective
techniques, as the "real section" (Langore, 1989), and
special methodologies for the field surveys. A typical
IP real section modelling is presented in Figure 4.
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FIG. 2. Comparison of theoretical, finite elements and "infinite" elements solutions for the
apparent resistivity anomaly in Ohm.m over a vertical contact with resistivity contrast
1:100 Ohm.m.
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FIG. 3. A 3D modelling of the IP anomalous effect in percentage.
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FIG. 4. IP real section of two layers in different depths, IP in percentage.

CONCLUSIONS

Finite elements are a good tool for the modelling of
complicated geoelectrical sections, which are
characteristic of the Albanian geology. In a number of
cases it permitted to evaluate correctly the influence of
the rugged relief effects and the geological conditions
in layered mediums, contacts and faults on the
anomalies of ore bodies or mineralized zones.

Real geoelectrical sections, which are created by
using the methodology also presented in this paper,
offer a reliable field data interpretation. Moreover, real
sections have shown the existence of many problems
related to the interpretation of field data, as well as the
need for special studies for solving these problems.
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