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Abstract 
 

Modeling of geoelectrical sections is carried out by using finite elements in two cases: 

1. Ore bodies with massive texture having contrast of resistivity with surrounding rocks, 

where modeling is done in 2.5D; 

2. Ore bodies with disseminated texture having no contrast of resistivity with 

surrounding rocks, and modeling is done in 3D. 

 

There ate taken into account two parameters, the apparent resisitivity and induced 

polarization. The effect of the relief as well as of the global geological structure is taken 

into account as well. Case stories are presented to demonstrate different effects and the 

usability of modeling by finite elements. 

 

The results of modeling are presented according to new method of real geoelectrical 

section, proposed by Ass. Prof. Dr. Perparim Alikaj, and developed recently in 

QUANTEQ IP Inc, CANADA. 

 

The results are a synthesis of many years of working and are further developed least years 

in collaboration of the authors with QUANTEC IP Inc. CANADA, in a number of 

projects. 

 

Introduction 

 

Resolving of geophysical problems means a finite iteration of the couple 

interpretation↔modeling. Theoretical models exist for a number of ideal cases, rarely 

found in the nature. The problem becomes more complicated when the depth of 

investigation increases, together with the increase of secondary effects as of the relief and 

of the geology of sections. In this paper is treated the problem of modeling of 

geoelectrical real sections by using finite elements to solve elliptic equations in 

heterogeneous medium related with complex geological situations and rugged relief. This 

processus is used both for Resistivity and IP modeling.  

 

Principles of application of finite elements in modeling of geoelectrical 

sections. 



 
The key for modeling of geoelectrical sections is the scattering of electrical field in a 

heterogeneous geological medium under a rugged relief. For this purpose we have used 

[Frasheri A. et al., 1984; 1990-94] the elliptic equation in its generalized form, which 

related weak problem is [Zienkiewicz O., 1977]: 

 

 min ∫ [(∇W)
T
D∇U - WQ] dv =  ∫ w [n

T
D∇U - Un] ds  (1) 

       V              Sn 

 
Where: U is the potential of electrical field; W,w are weight functions; D is the 

matrix of resistivity; n is the unitary normal vector to the boundary Sn; Un is the Newman 

boundary condition value. 

 

We solved this problem by using parametric finite elements with four nodes. Normally the 

geoelectrical section may be considered as a rectangle, the upper part of it deformed 

corresponding to the relief [fig.1] 

 
The boundary conditions are of type Newman which present power electrodes positioned 

in two nodes of the upper edge of the rectangle. In the other part of the boundary we 

normally use Newman conditions zero.  

 
The solution of the problem (1) gives the scattering of the electrical potential in a discrete 

form. There data need to be interpreted in the right way to give information compatible 

with that collected during field surveys. We had considered two parameters, the Apparent 

Resistivity and the Induced Polarization. 
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Fig.1. A finite element section of a geoelectrical section in rugged relief. 

F.E.M. MODELING OF IP FOR A BODY UNDER RUGED RELIEF 



Modeling of Apparent Resistivity Anomalous Effects. 

 
The meaning of “apparent resistivity” is related with the formulae: 

 

 ρa = ∆U/∆Uo         (2) 

 
Where: U is the electrical  potential of heterogeneous geoelectrical section; Uo is the 

electrical potential of homogeneous half-space with resistivity 1 Ohm.m. 

 

During the field measurements the Uo is evaluated by theoretical formulae of the electrical 

dipole: 

 

 Uo = c (1/RA - 1/RB)       (3) 

 
Where: Uo is the potential of the electrical field for the homogeneous half-space; RA,RB 

are distances from the calculation point to the current electrodes A and B. 

 

To carry out mathematical modeling we used two solutions. 

 

First solution was to solve the weak problem two times, one for the heterogeneous case 

and the other for the homogeneous half-space, having so both discrete approximations of 

U and Uo for the formulae [2]. The second solution was based on special treatment on the 

boundary conditions. The real geo-electrical section has to be considered similar to the 

lower half infinite space, but the ordinary finite element model implies a finite domain as 

shown in the Fig.1. As consequence the application of theoretical solution for the Uo 

gives deformed results having a non-negligible error. To avoid this error it is necessary to 

imply “the infinite” on the finite boundary.  

 

A “classical” solution to imply the infinite is to use “infinite elements”. A case of infinite 

elements we used for geo-electrical models is treated in [Frasheri N., 1983]. Another 

solution based on hybrid elements and Furrier transform is given in [Tong, Rossettos, 

1978]. A simple solution we used for geo-sections having no important heterogeneous 

horizontal layered structure. In this case it is possible to evaluate theoretically the normal 

gradient of the field in the boundary using the formulae: 

 

 dU/dn = c (RA/RA
3 
- RB/RB

3
)      (4) 

 
Where; dU/dn is the gradient of potential of the electrical field; RA,RB are distance vectors 

of the receiving point to the current electrodes A and B. 

 

In this case we simply calculate the flux of electricity on the boundary nodes and add 

respective values in the right side of the simultaneous linear equations resulting from the 

problem [1]: 

 

 [K].[U]=[F]         (5) 

 



Where: [K] is the master matrix of the system; [U] is the vector of discrete values of the 

potential U in nodes; [F] is the vector of flux concentrated in boundary nodes. 

 

A comparison of apparent resistivity values over a geo-section with a vertical contact for 

the theoretical, finite elements and “infinite” elements is given in Fig.2. 

 

Modeling of Induced Polarization Anomalous Effect. 

 
We used the finite element modeling of IP in two ways, related with physical 

characteristics of geo-sections. The IP phenomena is modeled mathematically as the 

potential of a double layered surface which represents the boundary between the 

mineralized homogeneous ore body and the surrounding rocks. In reality mineralized ore 

bodies have a certain texture, being not really homogeneous. The bodies with 

disseminated texture have the IP scattered in the volume, and bodies with massive texture 

have the IP concentrated on its boundary surface. The calculation of IP effect is based on 

the formulae of Bleil [Bleil D., 1953; Seigel H.O., 1959], as well as evaluation of 

Komarov [Komarov V.A., 1972] assuming that C(Uo+Uip)≈CUo.  
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Fig.2. Comparison of theoretical (1), finite elements (2) and 

“infinite” elements (3) solution for the apparent resistivity 

anomaly over a vertical contact. 

 

Taking into account the fact that in some cases the heterogeneity of the medium may 

influence considerably in the IP responses measured at the earth surface, we used 2.5D 

finite element modeling of IP for heterogeneous medium [Fig.1]. After calculating the 

potential U of the electrical field, we used the Bleil formulae for the calculation of the IP 

effect : 

 Uip= c ∫ ∇U (1/R) dv       (6) 

  V 



 
Where: Uip is the potential of induced polarization; 

R  is the distance vector from the integration point to the receiving point; ∇U is 

the potential gradient of the primary electrical field, calculated by solving the finite 

element model. 

 

For 3D modeling of bodies with massive texture in homogeneous medium we used the 

Bleil formulae, transformed using Green’s formulae: 

 

 Uip= c ∫ (1/R) (dU/dn) ds      (7) 

  S 

 
Where: R is the distance vector from the integration point to the measurement point; 

dU/dn is the gradient of the primary electrical potential on the boundary S of the body, 

calculated as in the formulae [4]. 

 

The integral is numerically calculated using the concept of finite elements for the 

boundary of the body, and using the standard numerical integration methods for the finite 

elements, defining automatically the number of integration points on the basis of relative 

size of elements [Fig. 3]. 
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Fig.3. The 3D modeling of IP anomalous effect. 

 
Being already a classical theory, finite elements continue to give way to new aspects of 

development and application of geophysics. Finite element modeling of complicated 

geological situations is necessary not only as a proof of the correctness of the 

interpretation of field data, but also it is very important for the development of new 

concept and techniques, as it is the “real section” [Langore L., 1989] and special 

methodologies for field surveys. A typical IP real section modeling is presented in the 

[Fig.4]. 
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Fig.4. IP real section of two layers in different depths. 

 

4.  Conclusions. 

 
Finite elements represent a good tool for the modelisation of complicated geo-electrical 

sections, characteristic of the Albanian geology. It permitted in a number of cases to 

evaluate correctly the influence of effects of rugged relief and of geology as layered 

mediums, contacts and faults to the anomalies of ore bodies or mineralized zones.  

 

Real geoelectrical sections, created using the methodology presented also in the paper, 

offer a sure way for the interpretation of field data. Moreover, real sections have shown 

the existence of many problems related with the interpretation of field data, and the 

necessity of special studies to solve these problems. 
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