
Bejo Duka
Ergys Rexhepi

Department of Physics,
 Faculty of Natural Sciences,

UNIVERSITY OF TIRANA

Problem importance
Natural convection of a fluid between rigid boundaries kept at
constant surface temperature received much attention because of
the theoretical interest and the wide engineering applications. The
fluid flow in a cylindrical annulus shows a multiplicity of solutions
(bifurcation phenomenon) [1], [2]. The problem of the stability of the
solutions in different geometries (cylindrical or spherical) is at the
uttermost interest of several theoretical studies [3]÷[6]. In the case of
two coaxial cylinders, using the Oberbeck-Boussinesq
approximation[4], the partial differential equations governing
conservation of mass, momentum and energy are written into non
dimensional form of cylindrical coordinates introducing Prandtl and
Rayleigh number [7].
References
[1] C. Kim, and T.Ro, "Numerical Investigation on Bifurcative Natural Convection in an
Air-Filled Horizontal Annulus", J. Heat Transfer, Vol.116, pp. 135-141, 1994.
 [2] J. D. Chung, C.-J. Kim, H. Yoo, J. S. Lee, “Numerical investigation on the bifurcative
natural convection in a horizontal concentric annulus”, Numerical Heat Transfer, A,
36(1999), 291 - 307,
[3] B. Duka, C. Ferrario, A. Passerini, S. Piva, “Non-linear approximations for
natural convection in a horizontal annulus” , International Journal of Nonlinear
Mechanics, 42 (2007), p. 1055-1061
[4] A. Passerini, G. Thäter, “Boussinesq-type approximation for second-grade fluids”,
Int. J. Non-Linear Mech. 40 (2005) 821.
[5] C. Ferrario, A. Passerini, S. Piva. Galdi, A Stokes-like system for natural convection
in a horizontal annulus, Nonlinear Analysis: Real World Applications, Volume 9, Issue
2, April 2008, 403-411
[6] C. Ferrario et al. "Theoretical results on steady convective flows between horizontal
coaxial cylinders. siam j. appl. math, vol. 71, no. 2 ,2011, pp. 465–486.
[7] Yoo, J.S., “Natural Convection in a Narrow Horizontal Cylinder Annulus: Pr <0.3”, Int.
. Heat Mass Transfer, Vol. 41 (1998), pp. 3055-3073.

Previous Calculations

In the Oberbeck- Boussinesq approximation (ρ ≈ ρ0 [1+α(T-T0)] , the
PDE system of equation are written:
∇ · v =0
(1/Pr) v · ∇v − ∆v + ∇Π = (Ra /B) sin ϕ er + Ra τ e3

v · ∇τ − ∆τ = vr / rB,
where the Prandtl number and Rayleigh number are:
Pr = ν/ k , Ra = (αg/νk)(Ti − To)(Ro − Ri)3
while B= ln(Ro/Ri)
 endowed with the boundary conditions v = 0, τ = 0 on ∂ΩA (τ is the
temperature deviation from the conduction profile) .

Running ANSYS-Fluent software package (noncommercial version) in
a PC, we studied the stability of solutions for different values of
Prandtl and Rayleigh parameters and for different temperature
difference between concentric cylinders. The calculations were
limited by the PC capacities. For example to get solution presented
here by the animation of streamlines, the calculation in a PC ended
after one day.
Therefore we applied the project: to run the numerical calculation in
HP-SEE grids.

Preliminary calculations
 The open source software that could substitute the ANSYS Fluent software for the
numerical calculations in the field of CFD, is OpenFoam (Open Source Field Operation
and Manipulation):
- Uses C++ libraries to solve numerically PDE
- Has several pre-build numerical solvers and pre/post processors too
- Is free under pubic license GNU
- Can be executed in parallel.
Is always in development by OpenFoam community.

•We installed OpenFoam package (version 2.1.1 for CentOS) and its add-ins (post -
processing utility, named “Paraview”) in our server (RedHat). We explored its capabilities
aiming to carry out numerical experiments previewed by our project and executed some
cases of its tutorial in serial mode.
• Replying to our request, the administrator of the PARADOX cluster (Serbia), where our
project is hosted, installed of the OpenFoam package and Paraview and offered the
assistance for using it.

• Thanks to the instructions and assistance of the Serbian specialist Vladimir Slavic, we
have started to use OpenFoam known applications in the parallel mode.

• As the internet connection to that cluster is very slow, we can’t visualize the results by
the graphical mode log-in in Paradox claster. Therefore, after executing an OpenFoam
case, we download the results and visualize them locally in our server.

Basics of OpenFoam
OpenFOAM package uses FV (Finite Volume) method to solve
numerically partial differential equations.
Spatial discretisation means approximation of a problem into
discrete quantities . Likes as the finite element and finite difference
methods, the FV method defines the solution domain by a set of
points that fill and bound a region of space (domain).
Temporal discretisation (For transient problems) dividing the time
domain into into a finite number of time intervals, or steps;
Equation discretisation: Generating a system of algebraic
equations in terms of discrete quantities defined at specific locations
in the domain, from the PDEs that characterise the problem.Discretisation of the solution
domain
Discretisation of the solution domain is
shown in Figure. The space domain is
discre-tised into computational mesh
on which the PDEs are subsequently
discretised. Discretisation of time, if
required, is simple: it is broken into a
set of time steps ∆t that may change
during a numerical simulation.
Discretisation of space requires the subdivision of
the domain into a number of cells, or control
volumes. The cells are contiguous, i.e. they do not
overlap one another and completely fill the domain

A list of tensors, and a mesh are combined
to define a tensor field relating to discrete
points in our domain, specified in
OpenFOAM by the template class
geometricField<Type>. The Field values
are separated into those defined within
the internal region of the domain, e.g. at
the cell centres (points P in Fig.), and
those defined on the domain boundary,
e.g. on the boundary faces (f in fig.). The
geometricField<Type> stores :
Internal field This is simply a
Field<Type>;
BoundaryField This is a
GeometricBoundaryField
Mesh A reference to an fvMesh, with some additional detail as to the
whether the field is defined at cell centres, faces, etc., as is shown in
the following table

Equation discretisation
Equation discretisation converts the PDEs into a set of algebraic
equations that are commonly expressed in matrix form as: [A] [x] =
[b]
where [A] is a square matrix, [x] is the column vector of dependent
variable and [b] is the source vector. The description of [x] and [b] as
‘vectors’ comes from matrix terminology rather than being a precise
description of what they truly are: a list of values defined at locations
in the geometry, i.e. a geometricField<Type>, or more specifically a
volField<Type> when using FV discretisation.
[A] is a list of coefficients of a set of algebraic equations, and cannot
be described as a geometricField<Type>. It is therefore given a class
of its own: fvMatrix. fvMatrix<Type> is created through discretisation
of a geometric<Type>Field and therefore inherits the <Type>. It
supports many of the standard algebraic matrix operations of
addition +, subtraction - and multiplication.
Each term in a PDE is represented individually in OpenFOAM code
using two classes of static functions: finiteVolumeMethod and
finiteVolumeCalculus, abbreviated by a typedef to fvm and fvc
respectively. fvm and fvc contain static functions, representing
differential operators, e.g. ∇2, ∇• and ∂/∂t, that discretise
geometricField<Type>s. The purpose of defining these functions
within two classes, fvm and fvc, rather than one, is to distinguish:
• functions of fvm that calculate implicit derivatives of and return an
fvMatrix<Type>
• some functions of fvc that calculate explicit derivatives and other
explicit calculations, returning a geometricField<Type>.

Example
 If we wished to solve Poisson’s equation ∇2φ = f, we would define phi and f
as volScalarField and then do:
solve(fvm::laplacian(phi) == f)
The Laplacian term is integrated over a control volume and linearised as
follows:

The temporal discretisation is controlled by the implementation of the spatial
derivatives in the PDE we wish to solve. For example, to solve a transient
diffusion equation
an Euler implicit implementation of this would read:
solve(fvm::ddt(phi) == kappa*fvm::laplacian(phi))
where we use the fvm class to discretise the Laplacian term implicitly. An
explicit implementation would read
solve(fvm::ddt(phi) == kappa*fvc::laplacian(phi))
where we now use the fvc class to discretise the Laplacian term explicitly.
The Crank- Nicholson scheme can be implemented by the mean of implicit
and explicit terms:
solve
(
fvm::ddt(phi)
==
kappa*0.5*(fvm::laplacian(phi) + fvc::laplacian(phi))
)

Boundary Conditions

Boundary conditions are required to complete the problem we wish to
solve. We therefore need to specify boundary conditions on all our
boundary faces. Boundary conditions can be divided into 2 types:
Dirichlet prescribes the value of the dependent variable on the
boundary and is therefore termed ‘fixed value’;
Neumann prescribes the gradient of the variable normal to the
boundary and is therefore termed ‘fixed gradient’
When we perform discretisation of terms that include the sum over
faces Σf , we need
to consider what happens when one of the faces is a boundary face.
• We can simply substitute φb in cases where the discretisation
requires the value on a boundary face φf , e.g. in the convection term.
• In terms where the face gradient (∇φ)f is required, e.g. Laplacian, it
is calculated using the boundary face value and cell centre value
(referring the fig.2.2)

Physical boundary conditions

The specification of boundary conditions is usually an engineer’s
interpretation of the true behaviour. Real boundary conditions are
generally defined by some physical attributes rather than the
numerical description as described previously
In incompressible fluid flow there are the following physical
boundaries:
Inlet The velocity field at the inlet is supplied and, for consistency,
the boundary condition on pressure is zero gradient.
Outlet The pressure field at the outlet is supplied and a zero gradient
boundary condition on velocity is specified.

Wall boundary conditions
No-slip impermeable wall The velocity of the fluid is equal to that of
the wall itself, i.e. a fixed value condition can be specified. The
pressure is specified zero gradient since the flux through the wall is
zero.
Thermal : constant temperature, or constant heat flux, etc.

 RECENT CALCULATIONS

Running the application for different delta – time of
discretisation and different space discretisation (studying the
scalability of the model)

• We used prepared meshes by the ANSYS Fuent software for the 2D
geometry of the cylindrical gap between two coaxial cylinders. Then such
meshes are transformed to the OpenFoam. In the fig. 2 thare are presented
two different meshes., with the same geometry.

• Then, we modified the case “hotRoom” of
“buoyantBoussinesqPimpleFoam “ application to run on our case (our
mesh, our boundary conditions: fixed temperatures on the two cyindrical
walls, our regime of turbulence, our fluid prametres, etc.).
• The prepared cases were uploaded to our directory of the PARADOX
supercomputer. After setting fields to be calculated (setFields command) and
distributing the field calculations (decomposePar –command) to 16 processes
(2 nodes, 8 processors per node), we submitted the jobs by the script like
the following:

Fig. 2 Two meshes with the same
geometry and different number of
divisions (number of cells: left
2592, right 5184)

#!/bin/bash
#PBS -q hpsee
#PBS -l nodes=2:ppn=8
#PBS -l walltime=24:00:00
#PBS -e ${PBS_JOBID}.err
#PBS -o ${PBS_JOBID}.out

cd $PBS_O_WORKDIR
date > skedar-kohe-x
. /opt/exp_soft/hpsee/OpenFOAM/OpenFOAM-2.1.1/etc/bashrc
#decomposePar -force
mpirun -np 16 -machinefile $PBS_NODEFILE buoyantBoussinesqPimpleFoam -parallel
-case /nfs/see_bduka/cil_40_80
date >> skedar-kohe-x

• When the job is ended, the calculated field by 16 processes are
composed using the command: reconstrucPar

• Then the numrical results are downloaded in our server and are
visualized there by “ParaView”

In order to study the consumed CPU time dependency from the
spatial discretisation, we executed the calculation for the same
physical and geometrical model and the same time disctreization and
time interval of numerical solution, to three different mesh divisions:
a) 24 radial × 48 angular = 1052 divisions; .
b) 36 radial × 72 angular = 2592 divisions; c) 42 radial × 108 angular =
5184 divisions;

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
1

1.2

1.4

1.6

1.8

2

number of mesh cells

C
P

U
 ti

m
e

(in
 h

)

Fig. 3. The dependency of CPU time from the spatial discretisation.

It seems there is linear dependency of the CPU time consumed to get the
solution from
the number of cells of the mesh when the time discretisation is the
same,

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

delta - time (s)

C
P

U
 ti

m
e

(h
)

Fig. 4. The dependency of CPU time from the time discretisation.

It seems that for delta – time ≤ 0.01, the solution need too much time
to converge, while for delta – time ≥ 0.01 there is a proportionality
between the CPU time consumed to get the solution and the delta-
time of time discretisation.

The received results are similar to those we received before by ANSYS Fluent.
The OpenFoam has advantages regarding the ANSYS Fluent, because we can
change the solver by defining different kind of equations that are to be
solved numerically, while Fluent solves numerically predefined system of PDE
(defining only the method of approximation and scheme of numerical
solution) that are not seen explicitly.
 So far, we have launched many times the our model in PARADOX, for
different values of geometrical and physical parameters and we are
analyzing results by visualizing the temperature field and stream lines. In the
following we present only some snapshot of these fields and their time
evolution (see animations).

Fig. 5. Three no sequential snapshots from the animation of time evolution
of the stream lines in one of cases of the model. The numerical data are
received from running the application in PARADOX claster and the graphis
are produced by running paraView post-processsing locally in our server

Fig. 6 Three no sequential snapshots from the animation of time evolution of
the temperature field in one of cases of the model. The numerical data are
received from running the application in PARADOX claster and the graphis
are produced by running paraView post-processsing locally in our server.

Streamlines animation Temperature animation

Acknowledgments This work makes use of results produced by the High-Performance Computing Infrastructure
for South East Europe's Research Communities (HP-SEE), a project co-funded by the European Commission (under
contract number 261499) through the Seventh Framework Programme. HP-SEE involves and addresses specific
needs of a number of new multi-disciplinary international scientific communities (computational physics,
computational chemistry, life sciences, etc.) and thus stimulates the use and expansion of the emerging new
regional HPC infrastructure and its services. The work is supported by the Paradox HPC system of Institute of
Physics, University of Belgrade, Serbia. Full information is available at http://www.hp-see.eu/.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

